Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36342187

RESUMO

Flavonoids are rich in tea plants (Camellia sinensis), and responsible for the flavor and healthful benefits of tea beverage. The anthocyanin levels in the purple tender shoots are higher than in the general green leaves of tea plant, which provide special materials to search metabolic mechanisms of flavonoid enrichment in plant. In this work, flavonoid differences between purple and green shoots from tea cultivars "Zijuan" (ZJ) and "Yunkang10" (YK-10) were investigated through metabolomic analysis, and mechanisms for their difference were surveyed by comparative transcriptomic and proteomic analysis. Levels of 34 flavonoids were different between ZJ and YK-10 shoots. Among them, 8 and 6 were marker metabolites in ZJ and YK-10, respectively. The differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and different-level metabolites (DLMs) between ZJ and YK-10 were researched, respectively; and interactions including DEG-DLM, DEP-DLM, DEG-DEP, and DEG-DEP-DLM were analyzed; the contents of 18 characteristic flavonoids in tea leaves and expressions of 34 flavonoid metabolic genes were measured to verify the omics results. Integrated above analyses, a proposed model of flavonoids biosynthesis in tea shoots were established. The differential expression of the leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), UDPG-flavonoid glucosyltransferase (UGT) 75L12 and 94P1 at gene level, and the ANS, ANR, and UGT78A15 at protein level, were closely associated with differences in flavonoids between ZJ and YK-10 shoot. Together, this study provides new information on the flavonoid accumulation mechanism in tea plant.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Flavonoides/metabolismo , Proteômica , Multiômica , Antocianinas , Transcriptoma , Oxirredutases/genética , Chá/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
PeerJ ; 7: e6521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842905

RESUMO

Anthocyanin is an important parameter for evaluating the quality of wine grapes. However, the effects of different light intensities on anthocyanin synthesis in grape berry skin and its regulation mechanisms are still unclear. In this experiment, clusters of wine grape cv. 'Marselan' were bagged using fruit bags with different light transmittance of 50%, 15%, 5%, and 0, designated as treatment A, B, C and D, respectively. Fruits that were not bagged were used as the control, designated as CK. The anthocyanin composition and concentration, as well as gene expression profiles in the berry skin were determined. The results showed that the degree of coloration of the berry skin reduced with the decrease of the light transmittance, and the veraison was postponed for 10 days in D when compared with the CK. Total anthocyanin concentration in the berry skin treated with D decreased by 51.50% compared with CK at the harvest stage. A total of 24 and 21 anthocyanins were detected in CK and D, respectively. Among them, Malvidin-3-O-coumaroylglucoside (trans), which showed a significant positive correlation with the total concentration of anthocyanins at the harvest stage (r = 0.775) and was not detected in D, was presumed to be light-induced anthocyanin. Other anthocyanins which were both synthesized in CK and D were considered to be light-independent anthocyanins. Among them, Malvidin-3-O-coumaroylglucoside (cis) and Malvidin-3-O-acetylglucoside were typical representatives. Remarkably, the synthesis of light-inducible anthocyanins and light-independent anthocyanins were regulated by different candidate structural genes involved in flavonoid biosynthesis pathway and members of MYB and bHLH transcription factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...